Source code for numpyro.distributions.discrete

# Copyright Contributors to the Pyro project.
# SPDX-License-Identifier: Apache-2.0

# The implementation largely follows the design in PyTorch's `torch.distributions`
#
# Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
# Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
# Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
# Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU                      (Clement Farabet)
# Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
# Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
# Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

import numpy as np

import jax
from jax import lax
from jax.nn import softmax, softplus
import jax.numpy as jnp
import jax.random as random
from jax.scipy.special import expit, gammaincc, gammaln, logsumexp, xlog1py, xlogy

from numpyro.distributions import constraints, transforms
from numpyro.distributions.distribution import Distribution
from numpyro.distributions.util import (
    binary_cross_entropy_with_logits,
    binomial,
    categorical,
    clamp_probs,
    lazy_property,
    multinomial,
    promote_shapes,
    validate_sample,
)
from numpyro.util import is_prng_key, not_jax_tracer


def _to_probs_bernoulli(logits):
    return expit(logits)


def _to_logits_bernoulli(probs):
    ps_clamped = clamp_probs(probs)
    return jnp.log(ps_clamped) - jnp.log1p(-ps_clamped)


def _to_probs_multinom(logits):
    return softmax(logits, axis=-1)


def _to_logits_multinom(probs):
    minval = jnp.finfo(jnp.result_type(probs)).min
    return jnp.clip(jnp.log(probs), a_min=minval)


[docs] class BernoulliProbs(Distribution): arg_constraints = {"probs": constraints.unit_interval} support = constraints.boolean has_enumerate_support = True def __init__(self, probs, *, validate_args=None): self.probs = probs super(BernoulliProbs, self).__init__( batch_shape=jnp.shape(self.probs), validate_args=validate_args )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) samples = random.bernoulli( key, self.probs, shape=sample_shape + self.batch_shape ) return samples.astype(jnp.result_type(samples, int))
@validate_sample def log_prob(self, value): ps_clamped = clamp_probs(self.probs) return xlogy(value, ps_clamped) + xlog1py(1 - value, -ps_clamped)
[docs] @lazy_property def logits(self): return _to_logits_bernoulli(self.probs)
@property def mean(self): return self.probs @property def variance(self): return self.probs * (1 - self.probs)
[docs] def enumerate_support(self, expand=True): values = jnp.arange(2).reshape((-1,) + (1,) * len(self.batch_shape)) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values
[docs] class BernoulliLogits(Distribution): arg_constraints = {"logits": constraints.real} support = constraints.boolean has_enumerate_support = True def __init__(self, logits=None, *, validate_args=None): self.logits = logits super(BernoulliLogits, self).__init__( batch_shape=jnp.shape(self.logits), validate_args=validate_args )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) samples = random.bernoulli( key, self.probs, shape=sample_shape + self.batch_shape ) return samples.astype(jnp.result_type(samples, int))
@validate_sample def log_prob(self, value): return -binary_cross_entropy_with_logits(self.logits, value)
[docs] @lazy_property def probs(self): return _to_probs_bernoulli(self.logits)
@property def mean(self): return self.probs @property def variance(self): return self.probs * (1 - self.probs)
[docs] def enumerate_support(self, expand=True): values = jnp.arange(2).reshape((-1,) + (1,) * len(self.batch_shape)) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values
[docs] def Bernoulli(probs=None, logits=None, *, validate_args=None): if probs is not None: return BernoulliProbs(probs, validate_args=validate_args) elif logits is not None: return BernoulliLogits(logits, validate_args=validate_args) else: raise ValueError("One of `probs` or `logits` must be specified.")
[docs] class BinomialProbs(Distribution): arg_constraints = { "probs": constraints.unit_interval, "total_count": constraints.nonnegative_integer, } has_enumerate_support = True def __init__(self, probs, total_count=1, *, validate_args=None): self.probs, self.total_count = promote_shapes(probs, total_count) batch_shape = lax.broadcast_shapes(jnp.shape(probs), jnp.shape(total_count)) super(BinomialProbs, self).__init__( batch_shape=batch_shape, validate_args=validate_args )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) return binomial( key, self.probs, n=self.total_count, shape=sample_shape + self.batch_shape )
@validate_sample def log_prob(self, value): log_factorial_n = gammaln(self.total_count + 1) log_factorial_k = gammaln(value + 1) log_factorial_nmk = gammaln(self.total_count - value + 1) probs = clamp_probs(self.probs) return ( log_factorial_n - log_factorial_k - log_factorial_nmk + xlogy(value, probs) + xlog1py(self.total_count - value, -probs) )
[docs] @lazy_property def logits(self): return _to_logits_bernoulli(self.probs)
@property def mean(self): return jnp.broadcast_to(self.total_count * self.probs, self.batch_shape) @property def variance(self): return jnp.broadcast_to( self.total_count * self.probs * (1 - self.probs), self.batch_shape ) @constraints.dependent_property(is_discrete=True, event_dim=0) def support(self): return constraints.integer_interval(0, self.total_count)
[docs] def enumerate_support(self, expand=True): if not_jax_tracer(self.total_count): total_count = np.amax(self.total_count) # NB: the error can't be raised if inhomogeneous issue happens when tracing if np.amin(self.total_count) != total_count: raise NotImplementedError( "Inhomogeneous total count not supported" " by `enumerate_support`." ) else: total_count = jnp.amax(self.total_count) values = jnp.arange(total_count + 1).reshape( (-1,) + (1,) * len(self.batch_shape) ) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values
[docs] class BinomialLogits(Distribution): arg_constraints = { "logits": constraints.real, "total_count": constraints.nonnegative_integer, } has_enumerate_support = True enumerate_support = BinomialProbs.enumerate_support def __init__(self, logits, total_count=1, *, validate_args=None): self.logits, self.total_count = promote_shapes(logits, total_count) batch_shape = lax.broadcast_shapes(jnp.shape(logits), jnp.shape(total_count)) super(BinomialLogits, self).__init__( batch_shape=batch_shape, validate_args=validate_args )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) return binomial( key, self.probs, n=self.total_count, shape=sample_shape + self.batch_shape )
@validate_sample def log_prob(self, value): log_factorial_n = gammaln(self.total_count + 1) log_factorial_k = gammaln(value + 1) log_factorial_nmk = gammaln(self.total_count - value + 1) normalize_term = ( self.total_count * jnp.clip(self.logits, 0) + xlog1py(self.total_count, jnp.exp(-jnp.abs(self.logits))) - log_factorial_n ) return ( value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term )
[docs] @lazy_property def probs(self): return _to_probs_bernoulli(self.logits)
@property def mean(self): return jnp.broadcast_to(self.total_count * self.probs, self.batch_shape) @property def variance(self): return jnp.broadcast_to( self.total_count * self.probs * (1 - self.probs), self.batch_shape ) @constraints.dependent_property(is_discrete=True, event_dim=0) def support(self): return constraints.integer_interval(0, self.total_count)
[docs] def Binomial(total_count=1, probs=None, logits=None, *, validate_args=None): if probs is not None: return BinomialProbs(probs, total_count, validate_args=validate_args) elif logits is not None: return BinomialLogits(logits, total_count, validate_args=validate_args) else: raise ValueError("One of `probs` or `logits` must be specified.")
[docs] class CategoricalProbs(Distribution): arg_constraints = {"probs": constraints.simplex} has_enumerate_support = True def __init__(self, probs, *, validate_args=None): if jnp.ndim(probs) < 1: raise ValueError("`probs` parameter must be at least one-dimensional.") self.probs = probs super(CategoricalProbs, self).__init__( batch_shape=jnp.shape(self.probs)[:-1], validate_args=validate_args )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) return categorical(key, self.probs, shape=sample_shape + self.batch_shape)
@validate_sample def log_prob(self, value): batch_shape = lax.broadcast_shapes(jnp.shape(value), self.batch_shape) value = jnp.expand_dims(value, axis=-1) value = jnp.broadcast_to(value, batch_shape + (1,)) logits = self.logits log_pmf = jnp.broadcast_to(logits, batch_shape + jnp.shape(logits)[-1:]) return jnp.take_along_axis(log_pmf, value, axis=-1)[..., 0]
[docs] @lazy_property def logits(self): return _to_logits_multinom(self.probs)
@property def mean(self): return jnp.full(self.batch_shape, jnp.nan, dtype=jnp.result_type(self.probs)) @property def variance(self): return jnp.full(self.batch_shape, jnp.nan, dtype=jnp.result_type(self.probs)) @constraints.dependent_property(is_discrete=True, event_dim=0) def support(self): return constraints.integer_interval(0, jnp.shape(self.probs)[-1] - 1)
[docs] def enumerate_support(self, expand=True): values = jnp.arange(self.probs.shape[-1]).reshape( (-1,) + (1,) * len(self.batch_shape) ) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values
[docs] class CategoricalLogits(Distribution): arg_constraints = {"logits": constraints.real_vector} has_enumerate_support = True def __init__(self, logits, *, validate_args=None): if jnp.ndim(logits) < 1: raise ValueError("`logits` parameter must be at least one-dimensional.") self.logits = logits super(CategoricalLogits, self).__init__( batch_shape=jnp.shape(logits)[:-1], validate_args=validate_args )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) return random.categorical( key, self.logits, shape=sample_shape + self.batch_shape )
@validate_sample def log_prob(self, value): batch_shape = lax.broadcast_shapes(jnp.shape(value), self.batch_shape) value = jnp.expand_dims(value, -1) value = jnp.broadcast_to(value, batch_shape + (1,)) log_pmf = self.logits - logsumexp(self.logits, axis=-1, keepdims=True) log_pmf = jnp.broadcast_to(log_pmf, batch_shape + jnp.shape(log_pmf)[-1:]) return jnp.take_along_axis(log_pmf, value, -1)[..., 0]
[docs] @lazy_property def probs(self): return _to_probs_multinom(self.logits)
@property def mean(self): return jnp.full(self.batch_shape, jnp.nan, dtype=jnp.result_type(self.logits)) @property def variance(self): return jnp.full(self.batch_shape, jnp.nan, dtype=jnp.result_type(self.logits)) @constraints.dependent_property(is_discrete=True, event_dim=0) def support(self): return constraints.integer_interval(0, jnp.shape(self.logits)[-1] - 1)
[docs] def enumerate_support(self, expand=True): values = jnp.arange(self.logits.shape[-1]).reshape( (-1,) + (1,) * len(self.batch_shape) ) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values
[docs] def Categorical(probs=None, logits=None, *, validate_args=None): if probs is not None: return CategoricalProbs(probs, validate_args=validate_args) elif logits is not None: return CategoricalLogits(logits, validate_args=validate_args) else: raise ValueError("One of `probs` or `logits` must be specified.")
[docs] class DiscreteUniform(Distribution): arg_constraints = {"low": constraints.dependent, "high": constraints.dependent} has_enumerate_support = True pytree_data_fields = ("low", "high", "_support") def __init__(self, low=0, high=1, *, validate_args=None): self.low, self.high = promote_shapes(low, high) batch_shape = lax.broadcast_shapes(jnp.shape(low), jnp.shape(high)) self._support = constraints.integer_interval(low, high) super().__init__(batch_shape, validate_args=validate_args) @constraints.dependent_property(is_discrete=True, event_dim=0) def support(self): return self._support
[docs] def sample(self, key, sample_shape=()): shape = sample_shape + self.batch_shape return random.randint(key, shape=shape, minval=self.low, maxval=self.high + 1)
@validate_sample def log_prob(self, value): shape = lax.broadcast_shapes(jnp.shape(value), self.batch_shape) return -jnp.broadcast_to(jnp.log(self.high + 1 - self.low), shape)
[docs] def cdf(self, value): cdf = (jnp.floor(value) + 1 - self.low) / (self.high - self.low + 1) return jnp.clip(cdf, a_min=0.0, a_max=1.0)
[docs] def icdf(self, value): return self.low + value * (self.high - self.low + 1) - 1
@property def mean(self): return self.low + (self.high - self.low) / 2.0 @property def variance(self): return ((self.high - self.low + 1) ** 2 - 1) / 12.0
[docs] def enumerate_support(self, expand=True): if not not_jax_tracer(self.high) or not not_jax_tracer(self.low): raise NotImplementedError("Both `low` and `high` must not be a JAX Tracer.") if np.any(np.amax(self.low) != self.low): # NB: the error can't be raised if inhomogeneous issue happens when tracing raise NotImplementedError( "Inhomogeneous `low` not supported by `enumerate_support`." ) if np.any(np.amax(self.high) != self.high): # NB: the error can't be raised if inhomogeneous issue happens when tracing raise NotImplementedError( "Inhomogeneous `high` not supported by `enumerate_support`." ) values = (self.low + jnp.arange(np.amax(self.high - self.low) + 1)).reshape( (-1,) + (1,) * len(self.batch_shape) ) if expand: values = jnp.broadcast_to(values, values.shape[:1] + self.batch_shape) return values
[docs] class OrderedLogistic(CategoricalProbs): """ A categorical distribution with ordered outcomes. **References:** 1. *Stan Functions Reference, v2.20 section 12.6*, Stan Development Team :param numpy.ndarray predictor: prediction in real domain; typically this is output of a linear model. :param numpy.ndarray cutpoints: positions in real domain to separate categories. """ arg_constraints = { "predictor": constraints.real, "cutpoints": constraints.ordered_vector, } def __init__(self, predictor, cutpoints, *, validate_args=None): if jnp.ndim(predictor) == 0: (predictor,) = promote_shapes(predictor, shape=(1,)) else: predictor = predictor[..., None] predictor, self.cutpoints = promote_shapes(predictor, cutpoints) self.predictor = predictor[..., 0] probs = transforms.SimplexToOrderedTransform(self.predictor).inv(self.cutpoints) super(OrderedLogistic, self).__init__(probs, validate_args=validate_args)
[docs] @staticmethod def infer_shapes(predictor, cutpoints): batch_shape = lax.broadcast_shapes(predictor, cutpoints[:-1]) event_shape = () return batch_shape, event_shape
[docs] class MultinomialProbs(Distribution): arg_constraints = { "probs": constraints.simplex, "total_count": constraints.nonnegative_integer, } pytree_data_fields = ("probs",) pytree_aux_fields = ("total_count", "total_count_max") def __init__( self, probs, total_count=1, *, total_count_max=None, validate_args=None ): if jnp.ndim(probs) < 1: raise ValueError("`probs` parameter must be at least one-dimensional.") batch_shape, event_shape = self.infer_shapes( jnp.shape(probs), jnp.shape(total_count) ) self.probs = promote_shapes(probs, shape=batch_shape + jnp.shape(probs)[-1:])[0] self.total_count = promote_shapes(total_count, shape=batch_shape)[0] self.total_count_max = total_count_max super(MultinomialProbs, self).__init__( batch_shape=batch_shape, event_shape=event_shape, validate_args=validate_args, )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) return multinomial( key, self.probs, self.total_count, shape=sample_shape + self.batch_shape, total_count_max=self.total_count_max, )
@validate_sample def log_prob(self, value): if self._validate_args: self._validate_sample(value) return gammaln(self.total_count + 1) + jnp.sum( xlogy(value, self.probs) - gammaln(value + 1), axis=-1 )
[docs] @lazy_property def logits(self): return _to_logits_multinom(self.probs)
@property def mean(self): return self.probs * jnp.expand_dims(self.total_count, -1) @property def variance(self): return jnp.expand_dims(self.total_count, -1) * self.probs * (1 - self.probs) @constraints.dependent_property(is_discrete=True, event_dim=1) def support(self): return constraints.multinomial(self.total_count)
[docs] @staticmethod def infer_shapes(probs, total_count): batch_shape = lax.broadcast_shapes(probs[:-1], total_count) event_shape = probs[-1:] return batch_shape, event_shape
[docs] class MultinomialLogits(Distribution): arg_constraints = { "logits": constraints.real_vector, "total_count": constraints.nonnegative_integer, } pytree_data_fields = ("logits",) pytree_aux_fields = ("total_count", "total_count_max") def __init__( self, logits, total_count=1, *, total_count_max=None, validate_args=None ): if jnp.ndim(logits) < 1: raise ValueError("`logits` parameter must be at least one-dimensional.") batch_shape, event_shape = self.infer_shapes( jnp.shape(logits), jnp.shape(total_count) ) self.logits = promote_shapes( logits, shape=batch_shape + jnp.shape(logits)[-1:] )[0] self.total_count = promote_shapes(total_count, shape=batch_shape)[0] self.total_count_max = total_count_max super(MultinomialLogits, self).__init__( batch_shape=batch_shape, event_shape=event_shape, validate_args=validate_args, )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) return multinomial( key, self.probs, self.total_count, shape=sample_shape + self.batch_shape, total_count_max=self.total_count_max, )
@validate_sample def log_prob(self, value): if self._validate_args: self._validate_sample(value) normalize_term = self.total_count * logsumexp(self.logits, axis=-1) - gammaln( self.total_count + 1 ) return ( jnp.sum(value * self.logits - gammaln(value + 1), axis=-1) - normalize_term )
[docs] @lazy_property def probs(self): return _to_probs_multinom(self.logits)
@property def mean(self): return jnp.expand_dims(self.total_count, -1) * self.probs @property def variance(self): return jnp.expand_dims(self.total_count, -1) * self.probs * (1 - self.probs) @constraints.dependent_property(is_discrete=True, event_dim=1) def support(self): return constraints.multinomial(self.total_count)
[docs] @staticmethod def infer_shapes(logits, total_count): batch_shape = lax.broadcast_shapes(logits[:-1], total_count) event_shape = logits[-1:] return batch_shape, event_shape
[docs] def Multinomial( total_count=1, probs=None, logits=None, *, total_count_max=None, validate_args=None ): """Multinomial distribution. :param total_count: number of trials. If this is a JAX array, it is required to specify `total_count_max`. :param probs: event probabilities :param logits: event log probabilities :param int total_count_max: the maximum number of trials, i.e. `max(total_count)` """ if probs is not None: return MultinomialProbs( probs, total_count, total_count_max=total_count_max, validate_args=validate_args, ) elif logits is not None: return MultinomialLogits( logits, total_count, total_count_max=total_count_max, validate_args=validate_args, ) else: raise ValueError("One of `probs` or `logits` must be specified.")
[docs] class Poisson(Distribution): r""" Creates a Poisson distribution parameterized by rate, the rate parameter. Samples are nonnegative integers, with a pmf given by .. math:: \mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!} :param numpy.ndarray rate: The rate parameter :param bool is_sparse: Whether to assume value is mostly zero when computing :meth:`log_prob`, which can speed up computation when data is sparse. """ arg_constraints = {"rate": constraints.positive} support = constraints.nonnegative_integer pytree_aux_fields = ("is_sparse",) def __init__(self, rate, *, is_sparse=False, validate_args=None): self.rate = rate self.is_sparse = is_sparse super(Poisson, self).__init__(jnp.shape(rate), validate_args=validate_args)
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) return random.poisson(key, self.rate, shape=sample_shape + self.batch_shape)
@validate_sample def log_prob(self, value): if self._validate_args: self._validate_sample(value) if ( self.is_sparse and not isinstance(value, jax.core.Tracer) and jnp.size(value) > 1 ): shape = lax.broadcast_shapes(self.batch_shape, jnp.shape(value)) rate = jnp.broadcast_to(self.rate, shape).reshape(-1) nonzero = np.broadcast_to(jax.device_get(value) > 0, shape).reshape(-1) value = jnp.broadcast_to(value, shape).reshape(-1) sparse_value = value[nonzero] sparse_rate = rate[nonzero] return ( jnp.asarray(-rate, dtype=jnp.result_type(float)) .at[nonzero] .add( jnp.log(sparse_rate) * sparse_value - gammaln(sparse_value + 1), ) .reshape(shape) ) return (jnp.log(self.rate) * value) - gammaln(value + 1) - self.rate @property def mean(self): return self.rate @property def variance(self): return self.rate
[docs] def cdf(self, value): k = jnp.floor(value) + 1 return gammaincc(k, self.rate)
class ZeroInflatedProbs(Distribution): arg_constraints = {"gate": constraints.unit_interval} pytree_data_fields = ("base_dist", "gate") def __init__(self, base_dist, gate, *, validate_args=None): batch_shape = lax.broadcast_shapes(jnp.shape(gate), base_dist.batch_shape) (self.gate,) = promote_shapes(gate, shape=batch_shape) assert base_dist.support.is_discrete if base_dist.event_shape: raise ValueError( "ZeroInflatedProbs expected empty base_dist.event_shape but got {}".format( base_dist.event_shape ) ) # XXX: we might need to promote parameters of base_dist but let's keep # this simplified for now self.base_dist = base_dist.expand(batch_shape) super(ZeroInflatedProbs, self).__init__( batch_shape, validate_args=validate_args ) def sample(self, key, sample_shape=()): assert is_prng_key(key) key_bern, key_base = random.split(key) shape = sample_shape + self.batch_shape mask = random.bernoulli(key_bern, self.gate, shape) samples = self.base_dist(rng_key=key_base, sample_shape=sample_shape) return jnp.where(mask, 0, samples) @validate_sample def log_prob(self, value): log_prob = jnp.log1p(-self.gate) + self.base_dist.log_prob(value) return jnp.where(value == 0, jnp.log(self.gate + jnp.exp(log_prob)), log_prob) @constraints.dependent_property(is_discrete=True, event_dim=0) def support(self): return self.base_dist.support @lazy_property def mean(self): return (1 - self.gate) * self.base_dist.mean @lazy_property def variance(self): return (1 - self.gate) * ( self.base_dist.mean**2 + self.base_dist.variance ) - self.mean**2 @property def has_enumerate_support(self): return self.base_dist.has_enumerate_support def enumerate_support(self, expand=True): return self.base_dist.enumerate_support(expand=expand) class ZeroInflatedLogits(ZeroInflatedProbs): arg_constraints = {"gate_logits": constraints.real} def __init__(self, base_dist, gate_logits, *, validate_args=None): gate = _to_probs_bernoulli(gate_logits) batch_shape = lax.broadcast_shapes(jnp.shape(gate), base_dist.batch_shape) (self.gate_logits,) = promote_shapes(gate_logits, shape=batch_shape) super().__init__(base_dist, gate, validate_args=validate_args) @validate_sample def log_prob(self, value): log_prob_minus_log_gate = -self.gate_logits + self.base_dist.log_prob(value) log_gate = -softplus(-self.gate_logits) log_prob = log_prob_minus_log_gate + log_gate zero_log_prob = softplus(log_prob_minus_log_gate) + log_gate return jnp.where(value == 0, zero_log_prob, log_prob)
[docs] def ZeroInflatedDistribution( base_dist, *, gate=None, gate_logits=None, validate_args=None ): """ Generic Zero Inflated distribution. :param Distribution base_dist: the base distribution. :param numpy.ndarray gate: probability of extra zeros given via a Bernoulli distribution. :param numpy.ndarray gate_logits: logits of extra zeros given via a Bernoulli distribution. """ if (gate is None) == (gate_logits is None): raise ValueError( "Either `gate` or `gate_logits` must be specified, but not both." ) if gate is not None: return ZeroInflatedProbs(base_dist, gate, validate_args=validate_args) else: return ZeroInflatedLogits(base_dist, gate_logits, validate_args=validate_args)
[docs] class ZeroInflatedPoisson(ZeroInflatedProbs): """ A Zero Inflated Poisson distribution. :param numpy.ndarray gate: probability of extra zeros. :param numpy.ndarray rate: rate of Poisson distribution. """ arg_constraints = {"gate": constraints.unit_interval, "rate": constraints.positive} support = constraints.nonnegative_integer pytree_data_fields = ("rate",) # TODO: resolve inconsistent parameter order w.r.t. Pyro # and support `gate_logits` argument def __init__(self, gate, rate=1.0, *, validate_args=None): _, self.rate = promote_shapes(gate, rate) super().__init__(Poisson(self.rate), gate, validate_args=validate_args)
[docs] class GeometricProbs(Distribution): arg_constraints = {"probs": constraints.unit_interval} support = constraints.nonnegative_integer def __init__(self, probs, *, validate_args=None): self.probs = probs super(GeometricProbs, self).__init__( batch_shape=jnp.shape(self.probs), validate_args=validate_args )
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) probs = self.probs dtype = jnp.result_type(probs) shape = sample_shape + self.batch_shape u = random.uniform(key, shape, dtype) return jnp.floor(jnp.log1p(-u) / jnp.log1p(-probs))
@validate_sample def log_prob(self, value): probs = jnp.where((self.probs == 1) & (value == 0), 0, self.probs) return value * jnp.log1p(-probs) + jnp.log(probs)
[docs] @lazy_property def logits(self): return _to_logits_bernoulli(self.probs)
@property def mean(self): return 1.0 / self.probs - 1.0 @property def variance(self): return (1.0 / self.probs - 1.0) / self.probs
[docs] class GeometricLogits(Distribution): arg_constraints = {"logits": constraints.real} support = constraints.nonnegative_integer def __init__(self, logits, *, validate_args=None): self.logits = logits super(GeometricLogits, self).__init__( batch_shape=jnp.shape(self.logits), validate_args=validate_args )
[docs] @lazy_property def probs(self): return _to_probs_bernoulli(self.logits)
[docs] def sample(self, key, sample_shape=()): assert is_prng_key(key) logits = self.logits dtype = jnp.result_type(logits) shape = sample_shape + self.batch_shape u = random.uniform(key, shape, dtype) return jnp.floor(jnp.log1p(-u) / -softplus(logits))
@validate_sample def log_prob(self, value): return (-value - 1) * softplus(self.logits) + self.logits @property def mean(self): return 1.0 / self.probs - 1.0 @property def variance(self): return (1.0 / self.probs - 1.0) / self.probs
[docs] def Geometric(probs=None, logits=None, *, validate_args=None): if probs is not None: return GeometricProbs(probs, validate_args=validate_args) elif logits is not None: return GeometricLogits(logits, validate_args=validate_args) else: raise ValueError("One of `probs` or `logits` must be specified.")